Birds, hikers, snakes

and ants i 2 2
Bio-inspired optimisation algorithms




Reynolds, C. W. (1987). Flocks, Herds, and Schools: A Distributed Behavioral Model. In Computer Graphics (Vol. 21, Issue 4).

Animals are particles with simple behaviours

Reynolds introduced “Boids”, probably the first biological
use of particles
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Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN’95 - International Conference on Neural Networks, 4,
1942-1948.

Social particles for optimisation

Particle Swarm Optimisation (PSO), a global minimum algorithm against Gradient Descent
weaknesses.

No need for differentiation, no problem on non-differentiable function.

A single evaluation per step, even on N-dimensional spaces!
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PSO idea Gradient Descent idea

Algorithm: Algorithm:
Each particle has a position Each particle has a position
Evaluate the function Evaluate the function and the gradient

- You probably want to compute the finite difference
method to compute the slope in each direction

independently
Keep track of the best evaluation made so far
Move a little bit toward the group’s best Move in the direction of the gradient for an unknown
evaluation and your own best evaluation distance

- If the slope is null, you're dead
- If there is a discontinuity, you're dead
- If the slope is gentle, it’s going to be a long ride
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Introduce neighborhood

Increase searching area by having interconnected subgroups: “neighborhoods”

One of the simplest neighborhood: a simply connected ciirve. :

O O
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Local constraints instead of global constraints

We've seen that particles can locally create a global behaviour,
We’'ve seen that particles can locally find optimal minimisations,

We’ll see that particles can do both at once.
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Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: Active contour models. International Journal of Computer Vision, 1(4), 321-331.

/’
Snake, the active contours algorithmQ

Algorithm: -

- Each particle is linked by springs with 2 neighbors
- Each particle follow the gradient of a function.

The end. Q&T%
Little demo ,
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Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: Active contour models. International Journal of Computer Vision, 1(4), 321-331.

Snake, easy to compute

Minimisation of energy in a system

- Internal energy (controls locally the shape)
- “Continuity”
- “Curvature”

- External energy (controls the positioning of the shape, what we want to optimise)
- “Image”

1
::take = f Esnake(v(‘g)) dS
0

1
- fo E(v(s)) + Einage(¥(5))

+ E (v(s)) ds
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Snake, easy to compute... at first sight

Minimisation of energy in a system

- Internal energy (controls locally the shape)
“Continuity”
“Curvature”

- External energy (controls the positioning of the shape, what we want to optimise)
“Image”

snake f Esnake(v(‘g)) dS

@@f
\ﬁ\(\é\' \ = J; Eint(v(s)) + Eimage(v(s))
QP o $\HL E . (v(s)) ds
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Snake, easy to compute... at first sight
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Snake, easy to compute... at first sight
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Snake, easy to compute... at first sight

Minimisation of energy in a system
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Snake, awful to tune

Perfect when the “object” is at the center of the space.

Perfect when there is a “global gradient” towards the object.

Perfect when the initial curve is already in a “good initial position”.

But what if...

the gradient is null around a vertex,
the slope is too gentle in the whole area,

we don’t have the good initial conditions,
-7
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Snake, awful to tune

E image = wl'meEline +

Perfect when the “object” is at the center of the space.
Perfect when there is a “global gradient” towards the object.
Perfect when the initial curve is already in a “good initial position”.

But what if...

the gradient is null around a vertex,
the slope is too gentle in the whole area,

we don’t have the good initial conditions,
-7

w edgs
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E term

W termd
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Rivest-Hénault, D., Cheriet, M., Deschénes, S., & Lapierre, C. (2010). Length increasing active contour for the segmentation of small blood
vessels. Proceedings - International Conference on Pattern Recognition, 2796—2799.
Gunn, S. R., & Nixon, M. S. (1995). Improving snake performance via a dual active contour (pp. 600-605)

Snake, some improvements

- Null gradient around the shape:
- Force the contours to grow

- We don’t know how to choose the initial conditions:
- Use of dual-snakes
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Snake, some improvem

- Null gradient around the shape: (b)

- Force the contours to grow

- We don’t know how to choose the initial conditiot
- Use of dual-snakes %

(a) Example Initialisation (b) Example Dual Result (c) Example Kass result

= B0 %
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(d) Cup Initialisation () Dual Cup Result (f) Kass Cup Result
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Snake, some improvem

- Null gradient around the shape: (b)

- Force the contours to grow

- We don’t know how to choose the initial conditiot
- Use of dual-snakes

(a) Example Initialisation (b) Example Dual Result (c) Example Kass result

Snakes: Active contour models »
M Kass, A Witkin, D Terzopoulos - International journal of computer vision, 1988 - Springer

... Figure 3 shows an example of such a snake exposed to a standard subjective contour illusion
[7]. The shape of the snake contour between the edges and lines in the illusion is entirely ...
¢ Enregistrer Y Citer | Cité 27441 fois | Autres articles Les 41 versions
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Snake, my Todo list

- Find a good initial curve placement using the Ant Colony Optimisation

- Mixing PSO and Snake for speeding up the convergence
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